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Abstract

Gait accelerometry is a promising tool to assess human walking and reveal deteriorating gait charac-

teristics in patients and can be a rich source of clinically relevant information about functional declines

in older adults. Therefore, in this paper, we propose a comprehensive set of signal features that may

be used to extract clinically valuable information from gait accelerometry signals. To achieve our goal,

we collected tri-axial gait accelerometry signals from 35 adults 65 years of age and older. Fourteen

subjects were healthy controls, ten participants were diagnosed with Parkinson’s disease and eleven par-

ticipants were diagnosed with peripheral neuropathy. The data were collected while the participants

walked on a treadmill at a preferred walking speed. Accelerometer signal features in time, frequency and

time-frequency domains were extracted. The results of our analysis showed that some of the extracted

features were able to differentiate between healthy and clinical populations. Signal features in all three

domains were able to emphasize variability among different groups, and also revealed valuable infor-

mation about variability of the signals between anterior-posterior, mediolateral and vertical directions

within subjects. The current results imply that the proposed signal features can be valuable tools for

the analysis of gait accelerometry data and should be utilized in future studies.
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1 Introduction

Loss of independence is a major factor of mobility disability in older adults, which also increases morbidity

and mortality in older adults [1]. Hence, walking and its related metrics (e.g. gait speed, cadence, step length,

step width, variability) have been previously considered as they are predictive of self-rated health status [2],

general cognitive function and dementia (e.g., [3], [4]), as well as morbidity and mortality [1]. Additionally,

older adults with central dysfunction such as Parkinson’s disease (PD) and peripheral dysfunction such

as Peripheral Neuropathy (PN) show even higher rates of disordered walking, instability and falls [5], [6].

While important indicators of overall function, simple gait metrics have shown to be limited in their ability

to discriminate between age- and disease related gait dysfunction, such as for older adults versus early stages

of PD [7], [8], or between those who do and do not fall within PD and PN cohorts [9], [10]. Clinical trials to

improve walking ability generally focus on normalizing gait metrics; however, in clinical groups such as PD,

these improvements do not necessarily coincide with improved motor control [11]. Thus, there is need for

outcome measures that will indicate changes in locomotor mechanisms not detected by simple gait metrics.

Various sensors have been used to assess gait over the years (e.g., [12], [13]). The quantification of gait

patterns via accelerometers has become popular in recent years due to improved measurement accuracy, ease,

and affordability of accelerometers. Gait acceleration data have demonstrated good measurement reliability

across days [14], with changes in gait speed [15], changes in walking surface [16], and with different anatomical

placement of the accelerometer, including placement at the trunk. As the trunk segment comprises over half

of the mass of the body, researchers have suggested that control of the trunk is prioritized by the nervous

system [17], [18]. In support, measures of trunk dynamics have shown to be more sensitive to age- and disease-

related gait changes than lower extremity and spatiotemporal measures [19], [20], [21]. Measures derived

from lower trunk accelerations, considered to be proxy center-of-mass accelerations, have been proposed as

global indicators of the motor control of walking [22].

The sensitivity of acceleration measurement allows for extraction of multiple signal features that have been

used in other biomedical applications (e.g., [23], [24]). Previous studies using accelerometry have generally

compared the discriminatory ability of one acceleration feature against typical spatiotemporal footfall data

(gait speed, cadence, step length/width) (e.g., [7]). Few studies have examined multiple acceleration features

within the same sample (e.g., [25]), and to date, no study has comprehensively examined multiple gait

accelerometry features across healthy and clinical groups.

The purpose of this study was to explore the feasibility and usefulness of extracting features from multiple

signal domains from trunk accelerometry signals in both healthy and clinical groups. We studied neurologi-

cally intact older adults, and individuals with PD and PN because we anticipated contrasting abnormalities

in gait performance, as these disorders differ in central and peripheral neurologic factors that influence gait

performance [26]. Specifically, we explored features in time, frequency and time-frequency domains. The

results of this study provide insights into how these additional signal features can be used to differentiate

between the three considered groups and how the features can possibly be used to identify changes during
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different walking conditions.

2 Methods

2.1 Data acquisition

Thirty five, adults age 65 years of age and older were recruited for this study which was approved by the

Institutional Review Board at the University of Pittsburgh. The participants included 14 healthy controls

(HC), 10 with Parkinson’s disease (PD) and 11 with peripheral neuropathy (PN). All individuals were

ambulatory without an assistive device or the assistance of another person and were able to continuously

walk for at least 3 minutes. All subjects were assessed using a structured history and physical exam to

ensure they meet the general inclusion/exclusion criteria for the study. Potential subjects were excluded if

they had any undiagnosed neurological (e.g. abnormal neurological examination such as spasticity, or severe

paresis), musculoskeletal, cardiopulmonary conditions or inadequate hearing or vision that would interfere

with the tasks of the study. Additionally, eligibility for HCs required no diagnosed neurological, vestibular

or sensory disorders and biothesiometer reading ≤ 20 at the bilateral malleolus. PDs were required to have

had a diagnosis of Parkinson’s disease for at least one year according to a Hoehn and Yahr scale rating of

2 or 3 and a bioesthesiometer reading ≤ 20 at the bilateral malleolus. All PD subjects were on a stable

dosing schedule of Parkinson’s medications for at least three months prior to testing. Subjects with PN were

required to have a biothesiometer reading ≥ 40 at the bilateral malleolus, indicating a loss of vibratory sense.

The data presented here were part of a larger project that examined postural control in both standing and

walking in 3 groups with distinct balance abilities. Subjects meeting inclusion criteria completed clinical

assessments of balance, strength, and overground walking, as well as three-dimensional motion analysis of

standing balance and walking.

Walking trials were performed on a large custom computer-controlled treadmill (1.2 m wide by 2 m long)

with a safety harness system. A 3-D optical motion capture system (Natural Point, Inc) was used to collect

trajectory data during gait. Subjects were outfitted with 39 (31 dynamic and 8 static) reflective markers

placed on the bony landmarks, as seen in Figure 1 (the large marker set was required to meet the objectives

of the larger study). For the purpose of this investigation, only the heel and toe trajectory data were used

for stride segmentation. Linear acceleration of the body was measured along vertical (V), anterior-posterior

(AP) and medial-lateral (ML) axes using a tri-axial accelerometer (MMA7260Q, Freescale Semiconductor)

firmly secured over the L3 segment of the lumbar spine as shown in Figure 2. The accelerometer was attached

using a belt, and a 4 inch wide elastic bandage wrapped over the accelerometer and around the trunk to

firmly attach it to the body. Trunk accelerations were sampled at 100 Hz. Each walking trial began with a

ramp up period, where the subject’s walking speed was slowly increased until the preferred speed determined

earlier was reached. Once the preferred gait speed was achieved, subjects completed a 3-minute walking trial

on the treadmill at their normal (preferred) walking speed.
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2.2 Data pre-processing

Using the motion capture data from the toe (MTOE as shown in Figure 1) and heel (HEEL as shown in

Figure 1), we segmented the trajectory data intro strides according to the algorithm in [27].

2.3 Feature extraction

From the stride segmented data, we extracted gait speed, mean stride intervals (MSI) and coefficients of

variations (CV) (e.g., [28], [29]). Also, using the stride segmented trajectories, we extracted the largest

Lyapunov exponents (λL) (e.g., [28]) and harmonic ratios (HR) (e.g., [22]) from the acceleration signals:

• The maximum Lyapunov exponent, λL, is used to assess local stability. λL denotes the sensitivity of

the system to small perturbations and the dependence of the system on initial conditions. To calculate

λL, we used the recorded signal values, x(n), and formed the state-space representations:

Z(n) = [x(n), x(n+ T ), x(n+ T ), ..., x(n+ (dE − 1)T )] (1)

where Z(n) is the dE-dimensional state vector, T is the time delay, and dE is the embedding dimension.

The autocorrelation function approach was utilized to estimate the the time delay [30]. The global false

nearest neighbor analysis was employed for the estimation of the embedding dimension [31]. dE = 5 was

set to five as recommended in previous publications [28], [32]. For finite-length signals, the maximum

finite-time Lyapunov exponents was estimated using the following relationship [32]:

ln(dj(i)) ≈ λL + ln(Dj) (2)

where dj(i) was the Euclidean distance between the jth pair of nearest neighbors after i discrete time

steps and D is the initial average separation between neighboring trajectories. The slopes of curves

defined by:

y(i) =
1

∆t
〈ln(dj(i))〉 (3)

were used to estimate λL. Here, 〈ln(dj(i))〉 denotes the average over all values of j. Specifically, λL

represents the slope of y(i) between forth and tenth strides.

• The harmonic ratios were calculated in each anatomical direction from low pass filtered acceleration

data over each stride. The cutoff frequency of the low pass filter was set to 30 Hz. First, we calculated

the discrete Fourier transform of the segmented data as follows (e.g., [27], [33]):

astride =

N−1∑
n=0

Cn sin(nωot+ φn) (4)

where the Cn is the harmonic coefficient, ωo is the stride frequency, and φn is the phase. The first 20
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harmonic coefficients are then summed and used to calculate the harmonic ratio, which is defined as:

HRAP and V =

〈∑20
n=2,4,6,... Cn∑19
n=1,3,5,... Cn

〉
(5)

HRML =

〈∑20
n=2,4,6,... Cn∑19
n=1,3,5,... Cn

〉
(6)

where 〈
∑
Cn/

∑
Cn〉 denotes the average ratio over all strides. This metric allows us to quantify the

step to step asymmetry in the acceleration at the L3/L4, which has been used as a proxy center of

mass.

2.3.1 Statistical features

Using only acceleration signals we extracted a number of different features from each of the three directions.

Considering a signal X = {x1, x2, . . . , xn}, the following statistical features (e.g., [34]) were extracted:

• An unbiased estimate of the standard deviation was computed as follows:

σX =

√√√√ 1

n− 1

n∑
i=1

(xi − µX)2 (7)

where µX denotes the mean of the signal. Standard deviation of the signal amplitude measures the

spread of the amplitude distribution and its squared values is related to the AC signal power. Greater

values of the standard deviation represent that the data points are spread over a larger interval of

values.

• The skewness was computed as follows:

ξX =
1
n

∑n
i=1(xi − µX)3{

1
n

∑n
i=1(xi − µX)2

}3/2
(8)

and it measures the asymmetry of the amplitude distribution . A zero value indicates that the data

points are evenly distributed on both sides, while negative/positive values indicated that more points

lie right/left from the mean.

• The kurtosis given by:

γX =
1
n

∑n
i=1(xi − µX)4{

1
n

∑n
i=1(xi − µX)2

}2 (9)

measures how the amplitude distribution decays slowly near the extremes. In other words, higher

values of kurtosis indicate that that variance stems from infrequent extreme deviations.

• The zeroth-lag cross-correlation coefficient between two signals was computed as follows:

ηXY =

∑n
i=1(xi − µX)(yi − µY )√∑n

i=1(xi − µX)2
√∑n

i=1(yi − µY )2
(10)

where µX and µY denote the mean of a signal. ηXY measures the similarity of two signals, where zero

indicates no similarity between two signals, while one indicates that the signals are identical.
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2.3.2 Information-theoretic features

Information-theoretic features, which are often used in the analysis of biomedical signals (e.g., [24], [35],

[36]), were calculated.

• To assess the predictability of the signal, we utilized a measure from information theory known as

the Lempel-Ziv complexity (LZC) [35], [37], [38]. As the first step, the signal was converted into 100

symbols via 99 thresholds. Next, the quantized signal was decomposed into k blocks, which were used

to compute the normalized LZC as follows [38]:

LZC =
k log100 n

n
. (11)

Given that the signal was quantized into 100 symbols, the logarithmic base of 100 was used in this

manuscript. Larger values of LZC indicate more complex data.

• Regularity of a signal was assessed via the entropy rate (ρ) [36], [39], as it is anticipated that consecutive

data points related. Values of X, initially normalized by subtracting µX and dividing by σX , were

quantized into 10 equally spaced levels. Next, sequences of 10 ≤ R ≤ 30 consecutive points in X̂ were

coded as a series of integers, ΥR = {u1, u2, ..., un−R+1}, using the following rule:

ui = 10R−1x̂i+R−1 + 10R−2x̂i+R−2 + ...+ 100x̂i (12)

As there were 10 quantization levels, ui values ranged from 0 to 10R − 1. To calculate the Shannon

entropy, ∆ , of ΥR, we used the following relation:

∆(R) =

10R−1∑
q=0

pΥR
(q) ln pΥR

(q) (13)

where pΥR
(j) represents the approximated probability of the value q in ΥR. To quantify regularity, we

first computed the normalized entropy rate, ∆̃ as follows:

∆̃(R) =
∆(R)−∆(R− 1) + ∆(1)$(R)

∆(1)
(14)

and the index of regularity, ρ, representing the entropy rate was computed as:

ρ = 1−min(∆̃(R)) (15)

where $(R) represents the approximated percentage of the coded integers in ΥR occurring once and

ρ ranges from 0 (maximum randomness) to 1 (maximum regularity).

• The cross-entropy rate, (ΛX|Y ), estimates the entropy rate between two stochastic processes [40], [41].

In other words, it informs us about how accurately we can predict a data point in one signal based on a

sequence of current and past data points in the other signal. The same normalization, quantization and

coding steps performed for the entropy rate are repeated for two signals, X and Y . Then, we calculated

6



Shannon entropies of ΥR
L , ΥY

R , and Υ
X|Y
R , given by ∆X(R), ∆Y (R), and ∆X/Y (R), respectively. These

values of Shannon entropies were used to compute the normalized cross-entropy as follows:

∆̃X|Y (R) =
∆X|Y (R)−∆Y (R− 1) + ∆X(1)percX|Y (R)

∆X(1)
(16)

where $X|Y (L) represents the approximated percentage of the elements occurring only once in Υ
X|Y
R .

The normalized cross-entropy was then employed to calculate the uncoupling function as follows:

UFX,Y (R) = min
(

∆̃X|Y (R), ∆̃Y |X(R)
)

(17)

and the index of synchronization denoting the cross-entropy rate was calculated as:

ΛX|Y = 1−min (UFX,Y (R)) . (18)

ΛX|Y values range from 0 (X and Y are completely uncoupled) to 1 (perfect synchronization).

2.3.3 Frequency features

Three features, previously considered in other contributions (e.g., [42]), were computed in the frequency

domain:

• The peak frequency, denoting a frequency at which the maximum spectral power occurred, was evalu-

ated using the following relationship:

fp = arg max
f∈[0,fmax]

|FX(f)|2 (19)

where FX(f) is the Fourier transform of the signal X and fmax = 100 Hz.

• The spectral centroid was evaluated as:

f̂ =

∫ fmax

0
f |FX(f)|2 df∫ fmax

0
|FX(f)|2 df

(20)

• In the current study, we defined the bandwidth of the signal using the following definition:

BW =

√√√√√∫ fmax

0

(
f − f̂

)2

|FX(f)|2 df∫ fmax

0
|FX(f)|2 df

(21)

2.3.4 Time-frequency features

The current study employed typical time-frequency features considered elsewhere (e.g., [24], [43]):

• The wavelet transform was utilized to learn about relative energies in different time-frequency bands.

We used a 10-level discrete wavelet decomposition of the signal via the discrete Meyer wavelet (e.g.,
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[44], [45], [46]) to compute the relative energy in each time-frequency band. In particular, the energy

described by the approximation coefficients was computed as follows:

Ea10
= ||a10||2 (22)

where || • || is the Euclidean norm and a10 represents a vector containing wavelet approximation

coefficients at the tenth level. The energy described by the kth-level detail coefficients was calculated

by:

Edk
= ||dk||2 (23)

Lastly, we utilized the following two relations to compute the relative energy contribution from each

decomposition level:

Φa =
Ea10

Ea10 +
∑10

k=1Edk

× 100% (24)

Φdk
=

Edk

Ea10 +
∑10

k=1Edk

× 100% (25)

• The wavelet entropy computed as follows [24], [47]:

ΘX = −Φa10
log2 Φa10

−
10∑
k=1

Φdk
log2 Φdk

(26)

utilized the same 10-level discrete wavelet decomposition as for the wavelet energy features above and

is generally considered to be a measure of the degree of time-frequency based order-disorder of the

signal. For example, a periodic mono-frequency signal can be considered as a very ordered process

and its wavelet representation is usually provided by one unique wavelet resolution level. For such

a signal, ΘX will be of a very low value (near zero). However, a random process represents a very

disordered behavior its wavelet representation will have with significant equivalent contributions from

all frequency bands. Therefore, ΘX for such a signal will reach very high values.

A summary of all measures and their meanings can be found in Table 1.

2.4 Statistical tests

To test for walk differences in the extracted features between groups and across directions, we initially

used the Kruskal-Wallis test (e.g., [48]). Subsequently, we employed the Mann-Whitney test for pairwise

comparisons between groups (e.g., [49]). A p-value of 0.05 was used to test for statistical significance. Given

the exploratory nature of the study, no adjustments to the significant level for multiple comparisons were

made.

3 Results

The results of our analysis are presented below.
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3.1 Features based on stride intervals

The gait speed (GS) was statistically lower for PDs than for PNs (p = 0.03) as shown in Table 2. Regardless

of group, the mean stride intervals (MSI) extracted from toes or heels were statistically equivalent (KW

test, p > 0.99). Additionally, the CVs of stride intervals were not statistically different between the intervals

extracted based on toes or heels (KW test, p > 0.30). Therefore, for the rest of the analysis, the stride

intervals from the right toe are used.

The largest Lyapunov exponents were not affected by the location of the marker on the foot (p > 0.397).

Furthermore, there were no group differences (p > 0.11). Harmonic ratios (HR) exhibited group statistical

differences in the AP direction. HRAP was statistically different between HCs and PDs (p << 0.01).

3.2 Statistical features

Table 4 summarizes the results for the considered statistical features based on gait accelerometry signals.

Sample gait signals are shown in Figure 3. When considering the variability of gait accelerometric signals,

σ, we observed no group differences in any directions (p > 0.11). However, the variability of these signals

was statistically different between the three anatomical directions for all three groups (p < 0.05), with the

accelerations in the V direction having the greatest variability (p << 0.01). When measuring the asymmetry

of gait accelerometry data, we observed that there were group differences for ξML between HCs and PDs

(p = 0.03). The strongest asymmetry was in the V direction for all three groups (p << 0.01), but ξML

and ξAP were not statistically different for PDs. The behavior of the extreme points in the distributions

depicting gait accelerometry data was measured with kurtossis, which showed that there were γAP group

differences between HCs and PDs (p < 0.02). Furthermore, only HCs had statistically different kurtosis

between the V and ML directions and the V and AP directions (p < 0.01). Other groups had no statistical

differences between the directions. Lastly, when considering correlations between the three directions, there

were no statistical differences between the groups (p > 0.17), but for PNs, ηV−AP was statistically higher

than ηML−V and ηML−AP (p < 0.01).

3.3 Information-theoretic features

Information-theoretic features are shown in Table 5. Predictability of gait accelerometric signals (LZC)

showed that accelerations signals in the ML direction were less complex for HCs than for PDs (p = 0.01)

or for PNs (p = 0.04). Similarly, the acceleration signals in the AP direction had lower predictability than

signals in the ML direction for all three groups (p < 0.04). Furthermore, the predictability was also smaller

in the V direction than in the ML direction for HCs (p << 0.01), and but greater than the AP direction for

PDs (p = 0.02).

Randomness of these accelorometric signals examined through the entropy rate of these signals found

that there were group differences for ρML between HCs and PN/PDs (p < 0.04). When considering the

anatomical directions, HCs had more random acceleration in the ML direction than the V and AP directions
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(p < 0.01). For PNs, the ML direction only had statistical differences from the AP direction (p = 0.04).

PDs had no statistical differences in different directions (p > 0.06).

To examine coupling between the three anatomical directions, we examined the cross-entropy rates which

showed no significant differences between directions (p > 0.17) and between the groups (p > 0.08).

3.4 Frequency features

The frequency characteristics, summarized in Table 6, depict the frequency content of gait accelerometry

signals for the groups. The peak frequencies were not statistically different among the groups in any direction

(p = 0.11). The peak frequency in the ML direction is significantly lower than the peak frequency in the

other two directions for all three groups (p < 0.02). There were no group differences in the spectral centroids

in the ML and V directions (p = 0.11), but HCs had statistically lower spectral centroids in the AP direction

than the PNs and PDs (p < 0.04). Furthermore, f̂V was statistically lower than f̂ML for all three groups

(p ≤ 0.04), and was statistically lower than f̂AP for PNs and PDs (p ≤ 0.01). Bandwidth differed among the

three groups, depending upon the direction. Specifically, HCs had smaller bandwidths in the ML and AP

directions than PNs/PDs (p ≤ 0.04). The bandwidth in the V direction was statistically smaller than for

the AP and ML directions for PNs and PDs (p ≤ 0.02) and it was statistically smaller than the bandwidth

in the AP direction for HCs (p = 0.04).

3.5 Time-frequency features

When considering the energy distribution across different wavelet bands (i.e., different time-frequency bands),

PNs and PDs had statistically lower energy concentration in ΦMLd7
of the ML direction than HCs (p ≤ 0.02).

The signals from the V direction had a different time-frequency structure since most of the energy (more

than 99%) was concentrated in the approximation coefficients. Hence, we omitted the other coefficients from

the analysis, since they did not provide any significant energy. No statistically different results were achieved

in the AP direction.

There were no group differences in the wavelet entropies in all three directions (p > 0.15). It is also

interesting to note that the signals in the V direction have their wavelet entropies close to zero, while in the

ML directions the wavelet entropies are significantly higher (p << 0.01). Furthermore, PDs and HCs had

statistically smaller entropies in the AP direction than in comparison to the ML direction (p ≤ 0.04).

3.6 A summary table

Table 8 summarizes all our findings. Most of the proposed features were able to differentiate between healthy

controls and PDs/PNs. The features were also able to differentiate among the three directions in some cases.

However, none of the features was able to distinguish between PNs and PDs.
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4 Discussion

We successfully acquired and extracted multiple features from trunk acceleration data in healthy adults and

individuals with PD and PN during preferred pace treadmill walking. This is the first study to extract

and report these features simultaneously, and to provide initial comparison of features between healthy and

clinical groups and between directions of motion.

As expected, persons with PD walked more slowly than the other two groups; however, the other typical

space-time stride interval features such as mean stride interval and coefficient of variation of stride interval

failed to distinguish between the groups. In contrast, the features of the acceleration signal performed better,

consistent with previous findings that acceleration measures (e.g., [7]) are often a more sensitive indicator of

age- and disease-related changes in gait.

Several of the acceleration features, including harmonic ratios, skewness, kurtosis, LZC, entropy, the

centroid frequency, bandwidth, and wavelet bands, were able to distinguish between the healthy controls

and the clinical groups. These measures appear to provide unique but complementary information. For

example, consistent with previous research we found that healthy controls had higher harmonic ratios, i.e.

greater step-to-step symmetry in the AP direction (and also in ML and V directions, but not significant) than

individuals with PD [7]. At the same time, healthy controls exhibited greater complexity and randomness

of ML accelerations than individuals with PD or individuals with PN. Greater complexity and randomness

of ML accelerations is expected in healthy gait, as control of ML motion is thought to be under continuous

feedback control allowing online step-to-step adjustments for effective balance control [50]. As AP and ML

motion are biomechanically coupled, greater ML complexity/randomness (better online adjustments) and

greater smoothness in forward progression was expected. For PD/PN, less ML complexity/randomness and

loss of smoothness in forward progression was found.

In addition to looking at differences in acceleration features across groups it is also useful to examine

directional responses within a group. For example, when examining entropy rate for healthy controls ML

randomness was greater than AP and V randomness. For individuals with PN, ML randomness was greater

than AP; however, there were no directional differences for PD. The higher values overall and the lack of

directional differences in entropy in the PD group suggests that individuals with PD are limiting their degrees

of freedom and are moving en bloc. Together, our findings suggest that acceleration data may be most useful

when features are not interpreted in isolation but interpreted together, providing a more complete picture

into the motor control of walking.

The frequency and time-frequency measures were different across the three anatomical directions. These

differences stemmed from the physiological directions of accelerations (i.e., it is expected to have significantly

different acceleration profiles in the anterior-posterior direction in comparison to the vertical direction).

However, some of these features were also able to differentiate between the HCs and PNs/PDs.

Though we were able to distinguish between HC and the clinical groups, no measure was able to dis-

criminate the gait patterns of individuals with PD and PN. One possible explanation is that examining gait
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on a treadmill, which has been shown to regulate gait (i.e. decrease spatiotemporal variability) may have

ameliorated the impact of PD on gait. While it has been suggested that trunk dynamics alone may serve

as global indicators of overall gait quality, it is possible that findings from additional accelerometers at the

head or arms would have revealed further insights into inter-segmental coordination and better discrimina-

tion between clinical groups. Future efforts should continue to examine these trunk acceleration features

simultaneously and in larger samples to confirm our findings, to explore gait adaptability via extraction

of these features during challenging gait conditions, and explore coordination during usual and challenging

walking conditions via extraction of features from additional accelerometers. In addition, care should be

taken when interpreting our results in general due to the small sample size and potential for type II error.

While this paper highlights the range of measures that can be extracted from trunk acceleration data,

ultimately we hope to use this type of information to guide, individualize, and evaluate therapeutic exercise

interventions for older adults and clinical populations with gait and balance disorders. For example, it may

be important to explore if and how gait rehabilitation interventions change acceleration features such as

harmonic ratios, complexity and randomness. While research has shown that traditional exercise interven-

tions (flexibility, strength and aerobic training) improve gait speed in older adults [51], [52], [53], it may be

that interventions that include a timing and coordination component that focus on improving motor control

processes essential for stepping [54] improve both spatiotemporal and trunk acceleration features, and this

may ultimately have a greater impact on improving overall function and disability.

5 Conclusions

In this article, we examined the suitability of multiple signal feature for the analysis of gait accelerometry

signals. Particularly, we examined statistical, information-theoretic, frequency and time-frequency features.

The results of our numerical analysis showed that these features provided a valuable insight into the under-

standing of gait patterns in healthy and pathological populations.
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[46] A. Cohen and J. Kovačević, “Wavelets: The mathematical background,” Proceedings of the IEEE,

vol. 84, no. 4, pp. 514–522, Apr. 1996.

[47] O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schurmann, and E. Basar, “Wavelet

entropy: a new tool for analysis of short duration brain electrical signals,” Journal of Neuroscience

Methods, vol. 105, no. 1, pp. 65–75, Jan. 2001.

16



[48] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion analysis of variance,” Journal of the

American Statistical Association, vol. 47, no. 260, pp. 583–621, Dec. 1952.

[49] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically

larger than the other,” The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, Mar. 1947.

[50] C. E. Bauby and A. D. Kuo, “Active control of lateral balance in human walking,” Journal of Biome-

chanics, vol. 33, no. 11, pp. 1433–1440, Nov. 2000.

[51] C.-H. Chou, C.-L. Hwang, and Y.-T. Wu, “Effect of exercise on physical function, daily living activi-

ties, and quality of life in the frail older adults: A meta-analysis,” Archives of Physical Medicine and

Rehabilitation, vol. 93, no. 2, pp. 237–244, 2012.

[52] J. L. Helbostad, O. Sletvold, and R. Moe-Nilssen, “Home training with and without additional group

training in physically frail old people living at home: effect on health-related quality of life and ambu-

lation,” Clinical Rehabilitation, vol. 18, no. 5, pp. 498–508, May 2004.

[53] T. Valenzuela, “Efficacy of progressive resistance training interventions in older adults in nursing homes:

A systematic review,” Journal of the American Medical Directors Association, vol. 13, no. 5, pp. 418–

428, Jun. 2012.

[54] J. M. VanSwearingen, S. Perera, J. S. Brach, R. Cham, C. Rosano, and S. A. Studenski, “A randomized

trial of two forms of therapeutic activity to improve walking: Effect on the energy cost of walking,”

The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 64A, no. 11, pp.

1190–1198, Nov. 2009.

17



Figure captions

Figure 1 - Marker locations.

Figure 2 - Placement of the accelerometer over the L3 segment. Please note that subscript ML (mediolateral)

denotes the x-axis of an accelerometer (positive to the right); the subscript V (vertical) denotes the y-axis

of an accelerometer (positive upwards); and the subscript AP (anterior-posterior) denotes the z-axis of an

accelerometer (positive posteriorly).

Figure 3 - Sample gait accelerometry signals: (a), (d) and (g) represent sample signals from HC in the A-P,

V and M-L directions, respectively. (b), (e) and (h) represent sample signals from PN in the A-P, V and M-L

directions, respectively. (c), (f) and (i) represent sample signals from PD in the A-P, V and M-L directions,

respectively. The amplitude is expressed in g.
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Figure 1

Figure 1: Marker locations.
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Figure 2

Figure 2: Placement of the accelerometer over the L3 segment. Please note that subscript ML (mediolateral)

denotes the x-axis of an accelerometer (positive to the right); the subscript V (vertical) denotes the y-axis

of an accelerometer (positive upwards); and the subscript AP (anterior-posterior) denotes the z-axis of an

accelerometer (positive posteriorly).
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Figure 3
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Figure 3: Sample gait accelerometry signals: (a), (d) and (g) represent sample signals from HC in the A-P,

V and M-L directions, respectively. (b), (e) and (h) represent sample signals from PN in the A-P, V and M-L

directions, respectively. (c), (f) and (i) represent sample signals from PD in the A-P, V and M-L directions,

respectively. The amplitude is expressed in g.
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Table captions

Table 1 - A summary of all features implemented in the study.

Table 2 - Values of basic SI features. GS = gait speed; MSI = mean stride interval; CV = coefficient of

variation for stride intervals. † = statistical differences between PNs and PDs.

Table 3 - Variations of the largest Lyapunov exponents and harmonic ratios among different groups. ‡ =

statistical differences between HCs and PDs.

Table 4 - Values of basic statistical features for accelerometry signals. ‡ = statistical differences between

HCs and PDs.

Table 5 - Variations of information-theoretic features during various walking tasks. ‡ = statistical differences

between HCs and PDs. § = statistical differences between HCs and PDs.

Table 6 - Frequency variations during various walking tasks. ‡ = statistical differences between HCs and

PDs. § = statistical differences between HCs and PDs.

Table 7 - Time-frequency variations of gait accelerometry signals during various walking tasks. ‡ = statistical

differences between HCs and PDs. § = statistical differences between HCs and PDs.

Table 8 - A summary of all features implemented in the study.
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Table 1

Table 1: A summary of all features implemented in the study.

Feature and abbreviation Definition

Gait speed (GS) Distance walked per unit of time (m/s).

Mean stride interval (MSI) Duration of a stride averaged over all strides.

Coefficient of variation of the

stride interval (CV)

(Within-subject standard deviation of the stride interval divided by the mean stride

interval)×100%

Lyapunov exponents (λLML
,

λLAP
, λLV

)

Quantifies local dynamic stability; the average exponential rate of divergence based on

naturally occurring local perturbations.

Harmonic ratios (HRML,

HRAP , HRV )

Quantifies the harmonic composition of the accelerations for a given stride via DFT;

HRs are calculated using the first 20 harmonic coefficients; higher values are interpreted

as greater walking smoothness.

Standard deviation of signal

amplitude (σML, σAP , σV )

Describes the spread of the amplitude distribution; higher values indicate a greater

spread of amplitude values.

Skewness of signal amplitude

(ξML, ξAP , ξV )

Describes the asymmetry of amplitude distribution; negative skewness indicates that

distribution of signal amplitudes lies predominantly on the right of the mean ampli-

tude, positive skewness indicates the values are predominantly on the left of the mean

amplitude.

Kurtosis of signal amplitude

(γML, γAP , γV )

Describes the extent to which the distribution of amplitudes is concentrated about the

mean amplitude; higher kurtosis values indicate the distribution is more peaked, with

infrequent extreme deviations.

Cross-correlation (ηML−V ,

ηML−AP , ηAP−V )

Measures the agreement or similarity between 2 directional acceleration signals (e.g.

AP and V accelerations); values range from 0-1 where 0 indicates no similarity and 1

indicates identical signals.

Lempel-Ziv complexity

(LZCML, LZCAP , LZCV )

Measures the complexity-predictability of the signal; higher values indicate a less pre-

dictable, more complex signal, lower values indicate a more predictable less complex

signal.

Entropy rate (ρML, ρAP , ρV ) Quantifies the regularity of a signal when anticipated that consecutive data points are

related; values range from 0-1 where 0 =maximum randomness/no relationship among

consecutive data points, to 1 = maximum regularity.

Cross-entropy rate/index of

synchronization (ΛML|V ,

ΛML|AP , ΛAP |V )

Quantifies the entropy rate between 2 acceleration signals/how accurately can we pre-

dict a data point in one signal given current and past data in the other signal; the

index of synchronization ranges from 0-1 where 0 indicates the 2 signals are completely

unsynchronized, and 1 reflects perfect synchronization.

Peak frequency (fpML, fpAP ,

fpV )

The maximum spectral power.

Centroid frequency (f̂ML,

f̂AP , f̂ML)

The frequency that divides the spectral power distribution into two equal parts.

Bandwidth (BWML, BWAP ,

BWV )

The difference between the uppermost and lower most frequencies/range of frequencies

in the signal.

Wavelet bands (Φ) Measures the relative energy contribution in a time-frequency band.

Wavelet entropy (ΘML,

ΘAP , ΘV )

Quantifies the degree signal disorder in the time-frequency domain; high values represent

disordered behavior with significant equivalent contributions from all frequency bands

(e.g. random process).

23



Table 2

Table 2: Values of basic SI features. GS = gait speed; MSI = mean stride interval; CV = coefficient of

variation for stride intervals. † = statistical differences between PNs and PDs.

HC PN PD

GS 1.09± 0.11 1.13± 0.08 0.96± 0.16†

MSI 1.11± 0.10 1.10± 0.07 1.14± 0.08

CV 2.29± 0.57 2.29± 0.56 2.33± 0.96
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Table 3

Table 3: Variations of the largest Lyapunov exponents and harmonic ratios among different groups. ‡ =

statistical differences between HCs and PDs.

HC PN PD

λLML
0.01± 0.01 0.02± 0.01 0.01± 0.01

λLV
0.02± 0.05 0.01± 0.01 0.01± 0.01

λLAP
0.01± 0.03 0.01± 0.02 0.02± 0.02

HRML 2.34± 0.56 1.90± 0.44 1.89± 0.45

HRV 3.40± 0.96‡ 2.99± 0.38 2.66± 0.55

HRAP 3.03± 0.80 2.51± 0.50 2.16± 0.48
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Table 4

Table 4: Values of basic statistical features for accelerometry signals. ‡ = statistical differences between HCs

and PDs.

HC PN PD

σML 0.11± 0.02 0.11± 0.02 0.10± 0.02

σV 0.19± 0.05 0.19± 0.03 0.17± 0.03

σAP 0.14± 0.03 0.14± 0.03 0.12± 0.02

ξML −0.12± 0.21‡ 0.01± 0.27 0.05± 0.19

ξV 1.31± 0.44 1.19± 0.49 1.09± 0.35

ξAP 0.37± 0.54 0.39± 0.29 0.20± 0.48

γML 4.07± 2.42 4.43± 2.03 5.08± 1.76

γV 5.51± 2.27 4.86± 1.11 4.86± 1.21

γAP 4.00± 1.50‡ 6.31± 5.37 6.54± 3.70

ηML−V 0.14± 0.24 0.07± 0.15 0.25± 0.30

ηML−AP 0.13± 0.20 0.09± 0.13 0.14± 0.25

ηV−AP 0.52± 0.39 0.63± 0.36 0.51± 0.46
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Table 5

Table 5: Variations of information-theoretic features during various walking tasks. ‡ = statistical differences

between HCs and PDs. § = statistical differences between HCs and PDs.

N PN PD

LZCML 0.58± 0.06‡ 0.53± 0.05 0.52± 0.03

LZCV 0.53± 0.05 0.51± 0.04 0.51± 0.02

LZCAP 0.53± 0.05 0.49± 0.05 0.48± 0.03

ρML 0.63± 0.13‡ 0.73± 0.08§ 0.77± 0.07

ρV 0.76± 0.06 0.76± 0.06 0.77± 0.04

ρAP 0.75± 0.09 0.80± 0.06 0.80± 0.04

ΛML|V 0.80± 0.16 0.89± 0.13 0.91± 0.14

ΛML|AP 0.77± 0.12 0.84± 0.17 0.89± 0.09

ΛAP |V 0.84± 0.18 0.83± 0.15 0.84± 0.10
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Table 6

Table 6: Frequency variations during various walking tasks. ‡ = statistical differences between HCs and

PDs. § = statistical differences between HCs and PDs.

N PN PD

fpML 1.56± 1.36 1.06± 0.49 0.88± 0.06

fpV 1.82± 0.16 1.82± 0.12 1.76± 0.12

fpAP 1.81± 0.16 1.82± 0.12 1.76± 0.12

f̂ML 6.46± 2.03 6.41± 1.58 7.49± 1.66

f̂V 5.07± 1.46 5.12± 0.92 5.49± 1.08

f̂AP 5.59± 1.35‡ 7.40± 2.67§ 7.77± 2.09

BWML 7.50± 2.12‡ 9.22± 2.06§ 9.97± 1.38

BWV 6.26± 2.32 6.99± 1.60 7.30± 0.91

BWAP 7.89± 2.16‡ 9.86± 2.44§ 10.4± 1.68
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Table 7

Table 7: Time-frequency variations of gait accelerometry signals during various walking tasks. ‡ = statistical

differences between HCs and PDs. § = statistical differences between HCs and PDs.

HC PN PD

ΦMLd7
12.1± 8.44‡ 5.21± 5.16§ 3.96± 2.71

ΦV a10 99.3± 0.32 99.3± 0.16 99.4± 0.25

ΘML 1.71± 0.70 1.42± 0.64 1.52± 0.54

ΘV 0.08± 0.03 0.08± 0.01 0.07± 0.02

ΘAP 0.99± 0.82 1.00± 0.76 0.87± 0.99
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Table 8

Table 8: A summary of all features implemented in the study.

Feature Discriminates between healthy and dis-

ease?

Directional differences (within group)

GS Yes, PDs slower than PNs. NA

MSI No NA

CV No NA

λLML
, λLAP

, λLV
No No

HRML, HRAP ,

HRV

Yes, HCs have greater AP smoothness than PDs. Yes for all groups (though not significant). The

highest smoothness values were in the V direction,

the lowest smoothness values were in the ML direc-

tion.

σML, σAP , σV No Yes, for all groups the V direction had the greatest

standard deviation of signal amplitude.

ξML, ξAP , ξV Yes, differences in ML skewness between HCs

(negative skewness) and PDs (positive skew-

ness).

Yes, for all groups the V direction had the largest

positive skewness.

γML, γAP , γV Yes, HCs had lower AP kurtosis than PDs. Yes, for HCs the V direction had significantly higher

kurtosis than AP or ML.

ηML−V , ηML−AP ,

ηAP−V

No Yes, all groups had the highest cross-correlation be-

tween V-AP, significant only for PNs.

LZCML, LZCAP ,

LZCV

Yes, HCs had greater ML complexity than PDs

/PNs.

Yes, the ML direction had the most complexity for

all 3 groups.

ρML, ρAP , ρV Yes, HCs had greater ML randomness than

PDs/ PNs.

Yes, for HCs ML randomness was greater than AP

or V; for PNs ML randomness was greater than AP

only; no directional differences for PDs.

ΛML|V , ΛML|AP ,

ΛAP |V

No No

fpML, fpAP , fpV No Yes, the peak frequency was lowest in the ML direc-

tion for all groups.

f̂ML, f̂AP , f̂ML Yes, HCs had a lower AP centroid frequency

than PDs/PNs.

Yes, for all groups the V centroid frequency was

the lowest and different from the ML frequency; for

PDs/PNs the V frequency was also lower than the

AP frequency.

BWML, BWAP ,

BWV

Yes, HCs had smaller ML and AP bandwidths

than PDs/PNS.

Yes, for all groups the V bandwidth was the smallest

and different from ML bandwidth; for PDs/PNs the

V bandwidth was also smaller than AP bandwidth.

Φ Yes, HCs had higher energy concentration in cer-

tain ML bands.

Yes, different time-frequency structure in the V di-

rection.

ΘML, ΘAP , ΘV No Yes, for all groups the ML wavelet entropies were

the highest and different from the V direction; for

HCs /PDs the ML entropies were also higher than

in the AP direction.
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